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Abstract

Geometrical and topological inconsistencies, such as self-intersections and non-manifold elements, are common in
triangular meshes, causing various problems across all stages of geometry processing. In this paper, we propose a method
to resolve these inconsistencies using a graph-based approach. We first convert geometrical inconsistencies into
topological inconsistencies and construct a topology graph. We then define local pairing operations on the topology graph,
which is guaranteed not to introduce new inconsistencies. The final output of our method is an oriented manifold with all
geometrical and topological inconsistencies fixed. Validated against a large data set, our method overcomes chronic
problems in the relevant literature. First, our method preserves the original geometry and it does not introduce a negative
volume or false new data, as we do not impose any heuristic assumption (e.g. watertight mesh). Moreover, our method does
not introduce new geometric inconsistencies, guaranteeing inconsistency-free outcome.

Keywords: mesh repairing; geometrical/topological inconsistencies; self-intersections; non-manifold meshes; topology
graphs

1 Introduction in which the immersion of a surface is not injective, such that a
point in the ambient space, in which the surface is immersed, is
occupied by the surface more than one time (Fig. 2a—c). On the
other hand, topological inconsistencies are defined as when not
all points on the triangular mesh are locally homeomorphic to
the Euclidean 2-space (Fig. 2d-f). Sources of such inconsistencies
are ubiquitous across all stages of geometry processing, ranging
from, for instance, smoothing and mesh refining, to feature ex-
trusion and isosurface extraction.

There is already a body of literature as will be discussed
shortly in the next section, alongside commercially and pub-
licly available software programs (3D Systems, 1997-2016; At-
tene, Campen, & Kobbelt, 2012; Cignoni et al., 2011; Aguerre,
Charton, Desbarats, & Recur, 2013) to resolve such inconsisten-
cies. However, a majority of these methods begin with an as-
sumption that a triangular mesh is a boundary representation
of some solid object occupying a volume. Hence, the methods
attempt to estimate the solid volume first, by performing hole

Triangular meshes are a widely adopted standard for represent-
ing surfaces in many applications, including computer graph-
ics, computer-aided (geometric) design (CAD/CAGD), games and
entertainment, virtual reality simulations, computer-assisted
surgery, digital dentistry, etc. In triangular meshes, the geome-
try of an object is defined by the vertex coordinates of triangles,
while the edges and triangular faces encode the topology, pro-
viding a light and concise representation of graphical data.
Despite the benefit of being light weight and easy to imple-
ment, triangular meshes are, however, prone to geometrical and
topological inconsistencies, such as those listed in Fig. 1. For ex-
ample, geometrical inconsistencies occur when vertices or faces
are spatially coincident (e.g. duplicate vertices, overlapping sur-
faces, self-intersections). On the other hand, topological incon-
sistencies occur when the connectivity among mesh elements
(i.e. vertices, edges, and faces) is invalid (e.g. non-manifold).
More formally, geometrical inconsistencies are defined as cases
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Figure 1: Our method can repair a variety of geometrical and topological inconsistencies in triangular meshes. Displayed here are a few examples of virtual and real-
world mesh data with self-intersections, non-manifold features, etc. Blue faces are triangles with outward normals and green are the ones with inward normals. Our
method demonstrates a reliable performance in contrast to other benchmark methods (Attene, 2010-2016; 3D Systems, 1997-2016), which tend to cause problems such
as falsely estimated volumes, an incorrect split of shells, unwanted elimination of geometry, etc. Note also that, as demonstrated in the Mdbius strip example, our
method can provide the user options to resolve topological conflicts. (a) The Mébius strip solved by offsetting. (b) The Mdbius strip solved by disconnections. (c) The nose
model. (d) The Klein bottle. (e) Persepolis—Relief Lion Bull model (https://sketchfab.com/3d-models/persepolis-relief-lion-bull-7e37e222c31b4b5eb424b703ec306d58).
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Figure 2: Examples of geometrical (a—c) and topological (d-f) inconsistencies: (a) two vertices with the same coordinate values; (b) non-coplanar self-intersection
between two faces; (c) coplanar intersection; (d) two opposing faces with conflicting orientations; (e) non-manifold edge with more than two (odd-numbered) adjacent

faces; and (f) non-manifold edge with even number of adjacent faces.

filling, gap closing, etc., before resolving inconsistencies. Unfor-
tunately, the assumption of solid can lead to plenty of problems
in practice. For example, the bas relief model in Fig. 1(e) captures
only one facet of a presumably larger solid. When a large por-
tion of the solid is missing as such, the heuristics to estimate
the solid may produce a false estimation of volume, resulting
in negative volume with falsely defined interior and exterior, as
shown in the figure. Moreover, like the Klein bottle example in
the same figure, estimation of volume may not even be possi-
ble in some models. Many existing algorithms fail to repair self-
intersections and other inconsistencies in such cases.
Furthermore, the existing mesh repairing tools and meth-
ods remove substantial regions around the problem locations
against the intent of the user. For example, Fig. 1c displays a
scan of a nose, obtained for a surgical purpose, containing many
flipped normals. During the process of resolving such inconsis-

tencies, the existing tools often erase significant portions of the
geometry while trying to eliminate the source of conflicts. A sig-
nificant amount of useful geometric information could be lost
as a result, rendering practical issues in many applications.

In this paper, we propose a more generic and rigorous
method to resolve the geometrical and topological inconsisten-
cies, with neither of those problems. The proposed method takes
a triangular mesh or a triangle soup (e.g. stereolithography) as
input and returns a set of oriented manifold meshes with all the
inconsistencies resolved. The method first performs an initial
clean up by converting geometrical inconsistencies to topologi-
calinconsistencies. During this operation, self-intersections and
other geometrical inconsistencies are detected and remeshed.
The result of this first step is a mesh free of geometrical incon-
sistencies but topological inconsistencies still remaining. The
method then constructs a topology graph by partitioning the
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Figure 3: The global algorithm presented on the example of a half-cut of the Klein bottle surface.

mesh along topologically conflicting boundaries. These bound-
aries, called dividing lines, as well as surface partitions divided
thereby, become the nodes of the topology graph, intercon-
nected by the graph edges based on their adjacency (see Figs 3,
6, and 7). Finally, building upon this novel topology graph, we de-
fine pairing operations and conflict handling schemes to resolve
topological inconsistencies locally around the dividing lines.
The final mesh produced in this last step not only is guaranteed
to be free of geometrical and topological inconsistencies but also
preserves the original geometry within the user-defined alter-
ation tolerance o > 0. While capable of being fully automated,
the method also provides manual control on how topological
conflicts are managed via a scoring system. This allows the user
to cope with various topological ambiguities that might occur in
real-world problems.

1.1 Related work

Many geometry processing operations on triangular meshes,
for instance, curvature/normal estimation, decimation, refining,
and smoothing, demand the input mesh to be free of geomet-
ric and topological inconsistencies. Hence, a substantial body of
geometry processing literature has been dedicated to computa-
tional methods to resolve such inconsistencies. According to an
extensive review of Attene, Campen, and Kobbelt (2013), these
methods can be summarized into two categories, namely global
and local approaches.

Global approaches impose an assumption that a mesh is
essentially the boundary representation of a solid. These ap-
proaches estimate in/out information of a solid and construct
a watertight mesh accordingly to resolve inconsistencies. The
methods in this category can further be divided into several sub-
categories. Certain methods intend to fill the volume of an ob-
ject using a volume representation, such as a 3D image with the
aim of closing holes and fixing inconsistencies (Andujar, Brunet,
& Ayala, 2002; Bischoff, Pavic, & Kobbelt, 2005; Jacobson, Kavan,
& Sorkine-Hornung, 2013; Lu, Quadros, & Shimada, 2017; Imai,
Hiraoka, & Kawaharada, 2014), while other methods propose a
surface-based approach. They propagate surface normals con-
tinuously over the surface (Sagawa & Ikeuchi, 2008; Schertler,
Savchynskyy, & Gumhold, 2016; Voutchkov, Keane, Shahpar, &
Bates, 2017). Still in a pure surface-based approach, considering
closed mesh, parity-counting methods (Nooruddin & Turk, 2003;
Ju, 2004; Spillmann, Wagner, & Teschner, 2006; Zhou, Grinspun,

Zorin, & Jacobson, 2016) count all the transitions between the ex-
terior and the interior of the shell and reorient the mesh, piece
by piece. Besides these methods that mainly aim to resolve in-
consistencies, other methods aim to fill large holes. Within these
methods, Furukawa, Itano, Morisaka, and Kawasaki (2007) and
Immonen (2018) reconstruct the outer hull of the object using
lines of sight to detect missing acquisition angles and fill miss-
ing data. Centin and Signoroni (2018) fill large holes between
disconnected shells. In addition, Hornung and Kobbelt (2006)
and Hétroy, Rey, Andujar, Brunet, and Vinacua (2011) propose
multi-resolution representations in order to determine an op-
timal topology of the reconstructed mesh. In an alternative con-
text, where a sequence of meshes is used, Feng, Zhang, Huang,
Wang, and Bao (2010) present a solution that rectifies the topol-
ogy of a model via skeleton matching between successive ele-
ments in the sequence. The assumption of solid, however, ren-
ders a problem when the mesh surface does not cover large
enough area of the solid boundary, such as the volume can be
falsely filled or in/out can be misdeemed (e.g. like the bas relief
models in Fig. 1e).

On the other hand, local approaches isolate sources of in-
consistencies and attempt to fix them locally around each of the
sources. These approaches readjust vertex locations through op-
erations such as edge hammering, face lifting, and edge swap-
ping (Yamakawa and Shimada 2009); removing self-intersecting
elements and filling the holes generated thereby (Attene 2010);
growing manifold elements from a seed face (Jung, Shin, & Choi,
2004; Zaharescu, Boyer, & Horaud, 2007); and locally remesh-
ing regions of self-intersections based on local voxel occupancy
(Bischoff & Kobbelt, 2005; Ju & Udeshi, 2006; Campen & Kobbelt,
2010). Afterward, topological inconsistencies are resolved by a
‘cut and restitch’ approach, where the non-manifold elements
are duplicated and decomposed first, and then reconnected to
build manifold shells. The common strategy to this end is to
minimize the number of resulting manifold shells (Rossignac
and Cardoze 1999); to fill the inside of the mesh with tetrahe-
dra and create a 3-manifold (Attene, Giorgi, Ferri, & Falcidieno,
2009); to convert the whole mesh into a watertight shell using
surface offsetting or removal; or to leave the user to decide from
among different topological combinations at each problem loca-
tion (Guéziec, Taubin, Lazarus, & Horn, 2001).

In terms of the completeness of the output, the global ap-
proaches tend to be more preferable over the local approaches,
as they typically return an output mesh that is globally repaired,
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Figure 4: Overview of the method. The rectangular blocks represent the states of the data and oval blocks represent the treatments. The conflict management is a side

processing used to resolve impossible graph configuration.

while the local approaches return partially repaired objects with
potentially remaining inconsistencies. However, at the same
time, global approaches alter or damage the original geometry
quite substantially during the volume estimation. Hence, global
approaches are more limited to applications where the mesh
covers large enough area of the solid boundary but contains a
large number of defects all over, whereas local approaches are
mainly for sparsely scattered defects.

The method proposed in this paper is a hybrid of the global and
the local method, taking advantage of both the global methods,
which guarantee the completeness of repairing throughout the
mesh, and the local methods, which do not introduce the false
assumption of solid. Our method does not add or remove any

geometric information to or from the original data. Besides, the
amount of modification can be limited via the user-controllable
parameter o > 0.

As illustrated in Fig. 4, the method consists of three steps.
First, triangles are processed into a mesh free of geometri-
cal inconsistencies. At this stage, only geometrical inconsisten-
cies such as self-intersections and duplicated elements are fo-
cused. Hence, existing topological inconsistencies remain and
new topological inconsistencies can be introduced as a result
of geometrical repairing. Those topological inconsistencies are
handled by the second and third steps. In the second step, the
method constructs a topology graph and repairs topological in-
consistencies by reorientation and pairing of the triangles. Dur-
ing this stage, surface patches are created by partitioning the
mesh along topologically conflicting areas. The patches are then
reoriented and paired to resolve the topological inconsistencies.
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Figure 5: The Klein bottle model after remeshing self-intersections. The geomet-
ric inconsistencies (self-intersecting faces) have been resolved in this way, while
there are topological inconsistencies still remaining.

Where the pairing is not trivial, patches are either disconnected,
offset, or removed depending on the user-defined preference. Fi-
nally, in the third step, non-manifold elements are separated
based on the pairing result. During this step, vertices can be
readjusted to avoid duplication, within the user-controlled tol-
erance o > 0. We define a self-collision-free operation for read-
justing vertex locations such that no additional geometrical in-
consistencies are introduced.

2 Topology Graph

The topology graph is a crucial component of the method
proposed in this paper. To construct a topology graph, we
first aim to resolve geometrical inconsistencies, such as du-
plicated elements, isolated vertices, degenerate elements, and
self-intersections. This produces a mesh free from geometri-
calinconsistencies but still contains topological inconsistencies,
which is then partitioned into separate manifold patches along
the dividing lines where the topology is inconsistent. Finally,
based on the adjacency among such manifold patches, as well
as the dividing lines, a topology graph is constructed. Below are
more technical details.

2.1 Converting geometrical inconsistencies to
topological inconsistencies

For a given input, our method merges duplicated elements, dis-
cards isolated vertices, and collapses degenerate elements by
using the method presented in Attene (2010). The stray elements
after the initial cleaning (e.g. one of the faces preserved from a
duplicated pair of faces) are tagged ‘leftover’ so that they can be
referenced and treated in the later step (Section 3.2.2).

After the initial cleaning, we then detect self-intersections
and remesh them (Fig. 5). Here, two types of self-intersections
must be distinguished, namely coplanar and non-coplanar inter-
sections. Detecting these self-intersections is a non-trivial task.
Resolving a coplanar intersection is a 2D problem, in which the
union of colliding faces forms a 2D polygon. Hence, coplanar

collisions can be resolved simply by triangulating the polygon
formed by the union of colliding faces using, for instance, De-
launay triangulation (Shewchuk 2008). On the other hand, a non-
coplanar intersection results in a line segment at the intersec-
tion between the intersecting triangles. To this end, we employ
a method presented in Attene (2014). During the remeshing, At-
tene uses an exact arithmetic representation of vertices. This
representation is preserved all along with the algorithm and is
used to compute all geometrical computations. The key idea
is to split a self-intersecting triangle into polygonal faces by
adding edges along the intersection lines. The polygons formed
by added edges are then triangulated.

Detecting self-intersections on a mesh is a non-trivial task.
A naive method for checking intersections between all potential
pairs of faces will result in O(n?) complexity, where n is the num-
ber of faces. To reduce the number of intersection tests, an axis-
aligned bounding box bounding volume hierarchy (AABB BVH)
is widely adopted. This allows limiting the search space into a
small subset where AABBs intersect, and thus, can speed up the
intersection test substantially (Ericson 2004).

2.2 Surface reorientation

The result of the first step presented in Section 2.1 is a mesh
composed of one or more shells free of geometrical inconsisten-
cies. However, the mesh might still inherit topological inconsis-
tencies, or, during the resolution of geometric inconsistencies,
new topological inconsistencies might have been introduced.

For that, we first segment the triangles based on their topo-
logical orientations determined by the ordering of vertices, to
construct oriented manifold patches. Adjacent triangles with the
same ordering of vertices (i.e. the same topological orienta-
tion) are grouped to form a manifold patch. To construct such
patches, we grow a patch from one randomly selected triangle
toits adjacent neighbours across edges that have the same topo-
logical orientation. The growth of the patch stops at the bound-
ary of the surface or where the growing front comes across a
non-manifold edge that has more than two adjacent triangles
due to some topological error. When growth stops at all fronts,
the current patch is registered as a manifold patch and the pro-
cess is repeated until there is no remaining face that does not
belong to a patch.

After the partitioning is done, the patch segments are fur-
ther merged to form a bigger patch whenever there exists a pair
of patches where one of them can flip its orientation to match
the orientation of the other. To facilitate this, we find the largest
patch first, based on the total surface area of the patch. The
orientation of the largest patch is propagated to its adjacent
patches by flipping the orientation of the neighbouring patches
accordingly. We propagate towards other neighbouring patches
until the flipping of orientation is no longer trivial due to topo-
logical inconsistencies, e.g. at a patch boundary with more than
two adjacent patches, or when there is a conflict between two (or
more) propagating fronts, e.g. at the joining of the Mdbius strip.

2.3 A topology graph

Finally, we construct a topology graph based on the manifold
patches we have developed so far. Here, we first define the fol-
lowing terms for the convenience of discussion.

2.3.1 Edge types
A full edge is an edge that has two adjacent faces with consis-
tent orientations. A boundary edge is an edge adjacent to a single
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Figure 6: Example of the five colliding spheres model. The different phases of the proposed algorithm are shown. (a) Original model. (b) Decomposition in oriented
manifold components (rendered in random colours). (c) After remeshing and initialization, vertices are classified into three types: normal vertices are rendered in
blue; proper dividing vertices in white; and limit dividing vertices in red. (d) After the pairing of oriented manifold components (rendered in random colours). (e) Output

(each oriented manifold component is rendered in random colours).
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Figure 7: Pairing graph of the Klein bottle model. Left shows the initial configuration and right shows the final configuration, where M, models the oriented manifold
component of the body of the bottle and M, models the oriented manifold component of the bottom.

face. A non-manifold edge is an edge with more than two adjacent
faces. A turning edge is an edge with two adjacent faces with in-
consistent orientation. Both full and boundary edges are topo-
logically consistent, while non-manifold and turning edges are
inconsistent and need to be remedied.

2.3.2 Umbrellas and sub-umbrellas

A set of neighbouring faces fanning out of a vertex v is called an
umbrella. An umbrella is complete if none of its spokes, i.e. edges
adjacent to v, is a boundary edge; otherwise, it is called partial.
Meanwhile, an umbrella, either complete or partial, is manifold
if all of the spokes are full edges. A sub-umbrella is a continuous
subset of an umbrella. A sub-umbrella is called manifold if all
edges between its faces are full edges.

2.3.3 Dividing lines

A dividing line is a chain of inconsistent edges. A dividing line
comprised only of turning edges is called turning dividing line.
Similarly, a dividing line comprised only of non-manifold edges
is called non-manifold dividing line (white lines, Fig. 6c). It is note-
worthy that a dividing line may pass through a vertex with a par-
tial umbrella (i.e. touches the surface boundary). In such cases,
we split the dividing line into two dividing lines at the boundary
vertex and treat them separately, for convenience.

2.3.4 Vertex types
Avertex without inconsistent edges in the spokes of its umbrella
is called consistent. A vertex on a dividing line is called a dividing

vertex. Among dividing vertices, a vertex at the junction of di-
viding lines or at the end of a dividing line is called a limit divid-
ing vertex. To make a distinction between limit dividing vertex and
other dividing vertices, we call the latter proper dividing vertices
(see Fig. 6c).

Based on such definitions, we now construct a topology
graph. A topology graph ¢ is comprised of nodes A, connected
via connections C. Two types of nodes comprise A of a topology
graph, namely dividing lines D and manifold patches M. The
two different types of nodes in N = {D, M} are connected by a
connection in C if and only if they are adjacent. Note that two
connected nodes must be of different types. In other words, a
connection always connects a dividing line to a manifold patch,
or vice versa. No connection between two manifold patches or
between two dividing lines is allowed. This property will facili-
tate the pairing and manipulation of topological configurations
in the later stage. Also, a manifold patch can be connected to a
dividing line more than one time.

For example, consider the Klein bottle example in Fig. 7. The
larger patch of the Klein bottle is connected three times to its
unique dividing line. Consider the Mdbius strip (see Fig. 10a),
whose related topology graph is composed of two nodes, one for
its unique patch and one for the reversing of the surface, and
two edges between these two nodes representing the two con-
nections around the dividing line.

In a graph G, a connection is labelled either 0 or 1, based
on the orientations of the nodes it connects. Initially, an ar-
bitrary direction is assigned to each of dividing lines. Then, a
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Figure 8: Computation of the ¢; angles. 6; = (&, §), where § are directions or-
thogonal to e in the plane of adjacent faces, and § is arbitrarily chosen.

connection is labelled 0 if the corresponding manifold patch and
the dividing line are in the same orientation, otherwise 1. The
orientations of a connection and a dividing line are considered
to be the same if the arbitrary direction assigned to the dividing
line is the same as that of the adjacent faces that compose the
connection (see Fig. 8).

3 Pairing on a Topology Graph

3.1 Orientation pairing

It is worth to emphasize again that inconsistencies remaining
at this stage are purely topological, as the geometric inconsis-

T 47 <« —» Pairing A

<.--» Pairing B

tencies have been fixed in the first stage. Hence, inconsistent
features we would like to address include, adjacent faces with
conflicting orientations, edges neighbouring with more than two
faces, and vertices adjacent to several umbrellas.

Given a topology graph g, topological inconsistencies are re-
solved locally at each dividing line. Our approach is to propagate
from a seed node in G and pair the orientation of the manifold
patches to enforce consistent topology. We define local opera-
tions here in such a way that a local change of topology does
not induce a new topological inconsistency on the nodes that
have been already visited.

We first begin with the biggest manifold patch in G, which
we denote as Mo, and flag it as visited, where the size of a patch
is determined by the sum of the areas of its triangles. We then
push all the dividing lines D € D adjacent to M, into a queue Q.
While Q is not empty, we visit a dividing line D and try to pair the
manifold patches M that are adjacent to D. When there are only
two such patches, pairing is straightforward as the two can be
paired together. When there are more than two patches, how-
ever, the patches are paired based on a criterion defined by the
user. For each of these pairs, un-visited manifold patches may be
flipped to enforce the consistent surface orientation. All patches
M as well as the current dividing line D are marked visited and
the un-visited dividing lines that are adjacent to M are pushed
into Q.

Here, note that there can be local configurations that cannot
be paired, such as odd connections (Fig. 9d). For such cases, we
use one of the conflict management strategies defined in Sec-
tions 3.2 and 3.3.

3.2 Handling conflicts via disconnection

As described above, there are cases where topological inconsis-
tencies cannot be resolved locally through the pairing-based op-
erations, e.g. the Mobius strip (see Fig. 10). For such cases, we let

<. .-» Pairing

(a) Pairable configuration with two solu-(b) Pairable configuration with one solution.

tions.

(c) Unpairable configuration.

(d) Odd configuration.

Figure 9: Examples of configurations of inconsistent edges on the left and their graph representations on the right.
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Figure 10: Example of topology graph construction and conflict management with the Mobius strip model. (a) Original model with its related topology graph. (b)
Handling conflicts via disconnection. One of the two connections is cut. (c) Handling conflicts via offsetting. The whole patch is duplicated and offsetted creating a

solvable configuration.

(a) Before

(b) After

Figure 11: Disconnection of a vertex. Blue point: the inner vertex to discon-
nect. Red edge: non-manifold edges. Green points: duplicate vertex of v added
to shrink edges. Light grey face: added faces.

the user decide from one of the following strategies to manage
the issue.

Disconnection lets the user drop the connection between a
dividing line in conflict and selected manifold patches. A discon-
nection will split a topologically inconsistent patch away from a
dividing line to resolve the inconsistencies (see Fig. 10b). Dur-
ing this operation, a patch could be moved apart from the di-
viding line geometrically, i.e. with displacements in vertices, or
just topologically without a geometric displacement. This can
be controlled by a user-defined real number parameter ¢ > 0.
The parameter o can be understood as the distance of discon-
nection. When o equals zero, no geometric modification is in-
troduced during the disconnection. When ¢ is non-zero, the gap
between the disconnected manifold patch and the dividing line
is going to be o or smaller.

3.2.1 Collision-free disconnection

It is worthwhile to note that a naive disconnection may intro-
duce a new self-intersection, as the displacement of a vertex
may cause, albeit small, a rotation of a face which may cause
a collision with another face. To this end, we define a collision-
free disconnection operation as follows. The idea is to confine
the geometric displacement of the patch boundary within exist-
ing triangles. To achieve this, let us focus on a proper dividing
vertex v of a dividing line D in conflict. Let ¢; = (v, v;) be an edge
adjacent to v in the manifold to be moved apart, and v; the op-
posite vertex in e;. Then, as illustrated in Fig. 11, we duplicate a
vertex at v, and contract the edge e; by moving the duplicated
vertex along the edge.

The amount of contraction is determined by the user-defined
parameter o. When v, and v, are other dividing vertices adja-
cent to v, and g; is the minimum angle between /(vv}, vv;) and
Z(vvj, vvp), the actual amount of contraction (i.e. displacement
of the duplicated vertex) oj is determined from the following

equation.

o
——  if B; 2,
oj={ sy P (1)
o otherwise

Here, note that Equation (1) projects the user-defined ampli-

tude o onto the edge ¢; such that the orthogonal distance after

the displacement from the dividing line becomes o. For the ac-

tual implementation, the first condition in Equation (1) can be

re-written as =%~ “_, where p; is the dot product corre-
]

sn() T 17

sponding to g;j, since the computation of the dot product and
the square root is faster than the computation of the sinusoidal
function. Note when o; is greater than or equal to the length of
the edge ¢;, we simply collapse the edge by deleting the faces
attached to it.

3.2.2 Disconnection scoring criteria
Finally, building upon such definition of the collision-free dis-
connection operation, we propose the following strategy to re-
solve topological conflicts. First, for a given dividing line, we set
the cardinality p of disconnection as 1 or 2, respectively, for odd
or even number of connections sharing the dividing line. We
then evaluate a hole impact score, a duplication score, and a con-
nectivity score, which are defined in the following paragraph. The
lexicographical order of three scores, in that order, defines the
priority of disconnection. If there is no p in such connections,
increase p by 2 and repeat from the first step.

The lexicographical scoring system we use for determining
the priority of disconnection is given below.

(i) If a limit dividing vertex has an umbrella corresponding to
the connection that contains a boundary edge, we give +1
to the connection. As such, if both of the limit dividing ver-
tices contain a boundary edge in their umbrellas, the con-
nection receives +2. This is to promote the minimization of
the number of holes into the mesh.

(i) If any of the faces directly adjacent to the connection were
previously tagged as a duplicate face in Section 2.1, we give
0 to the connection, otherwise 1. This gives a priority to du-
plicated patches since they may be flat volumes.

(iii) Disconnect the one that has the smallest manifold patch.
The size of a manifold patch is determined by the sum of
the areas of faces contained in the manifold. This is to avoid
the separation between large components of the mesh.

3.3 Handling conflicts via removal and offsetting

For the choices of removal/offsetting of conflicting oriented mani-
fold components (see Fig. 10c), a greedy algorithm is proposed that
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creates an ordered set of oriented manifold components {M;}. It is
initialized with the first oriented manifold component M connected
to conflicting dividing line dl. To determine M, a priority order on
the oriented manifold component related to dl is defined according
to the following score.

(i) The negative value of the number of end edges. Note: If an
edge is at both extremities, then it counts for two. This
value minimizes the risk of introducing new holes.

(ii) If the representative face of the connection is tagged as a du-
plicated face in Section 2.1, then 0; otherwise, 1. Note: This
gives the priority to duplicated patches since they may be
empty volumes.

(ili) The size of M. Note: This minimizes the loss/addition of

data.

(iv) The number of generated conflicting DLs if M is re-
moved/duplicated.

(v) The number of resolved conflicting DLs if M is re-
moved/duplicated.

The two last values minimize the addition of conflict on the
pairing graph and maximize the number of conflicts solved by
modifying M, respectively. {M;} grows until all DLs are resolv-
able. Finally, the modification is applied by removing/offsetting
all elements of {M;}. Offsetting an oriented manifold component
consists in duplicating the inner data and reversing the dupli-
cated surface of the hollow component, except for the vertices in
inconsistent edges, which are not duplicated. To separate these
two components, the duplicated vertices are offset with /2.
This offsetting can be performed following Kim, Lee, and Yang
(2004); Chen, Wang, Rosen, and Rossignac (2005); Liu and Wang
(2011); and Li and Kim (2015). If the method used for offsetting
introduces new self-intersections, the algorithm should restart
from the beginning, but during remeshing both duplicated faces
are removed and a constraint is added. A patch issued from a
duplication cannot be duplicated. If no patch can be offset and
conflicts remain, the conflictual strategy is used.

Algorithm 1 Pairing graph solving.

1: Solving DL with odd connections using disconnection, offsetting,
or patch removal operations according to user parametrisa-
tion.

2: Let s be an empty score parametrised by the user.

3: while all oriented manifold components have not been visited
do

4: Let mbe the biggest unvisited oriented manifold components.

5:  Fixing the orientation of m.

6: for each unvisited dividing line dl adjacent to m ordered by
size of the DLs do

7: Extend s with the best score including dl.

8: if s is conflictual then

9: Solving the dl by conflict handler defined by the
user.

10: else

11: Fixing the orientation of orientation manifold compo-
nents adjacent to dl according to s.

12: end if

13:  endfor

14: end while

3.4.1 Pairing graph solving

For solving the pairing graph, several solutions can be obtained
using the scoring rule system. The best pairing configuration of
the graph is determined by the following penalty score at each
node independently.

(i) If anode does not perform a complete pairing of all its con-
nections, then 0, otherwise 1.

(ii) #R: The sum of the areas of reversed faces. This forces the
reversing of a patch only if it blocks the pairing.

(iii) Or: Number of pairs constructed oriented towards an inner
interval, i.e. pairing B (Fig. 9a). This score adds a penalty
when a material is removed. When a pair is constructed
towards the inner, the later separation will result in a local
erosion of the surface. Otherwise, it will result in a local
offset.

(iv) #Mg: Number of pairs realized between two connections
related to the same oriented manifold component. This score
evaluates the merging/segmentation of the result.

Except for the first entry, the others are interchangeable or
can be reversed to obtain the expected result. As in the previous
scoring, the best score is the lowest in the lexicographical order.

In addition, two constraints can be applied. The first is pre-
serving patch orientations (PO) and the second is creating in/out
shells (In/Out). An in/out shell is a shell, potentially with incon-
sistent edges and holes, that can model a surface of an object,
in any inner point of its mesh, i.e. provide a consistency defini-
tion of the interior/exterior of the shell. This configuration is the
minimum requirement to perform Boolean operations by Char-
ton, Kim, and Kim (2017) and Barki, Guennebaud, and Foufou
(2015).

The In/Out constraint is applied by the propagation of the ori-
entation from the largest patch to its adjacent patches using the
priority of the number of edges of adjacent nodes.

Remark: These two constraints can also be combined. How-
ever, this can result in several conflicts, which will be handled
according to the scoring rule chosen by the user (as seen above
in Section 3.1).

In the following, the pairing score will be written as

(Fieldy, Field,, ...){Constraints}, 2

e.g. (Or, #Mg){In/Out}. The field zero is ignored because it is in-
variable. For each field, the reverse value can be used by adding
"—"in front of it.

For this final stage, non-manifold elements are duplicated and
optionally geometrically separated while preserving the self-
intersection free condition of the mesh. This geometrical dis-
placement is bordered by the alteration tolerance parameter o.
To do this, each vertex of the mesh is visited. If a non-manifold
vertex is found, its neighbourhood is decomposed into um-
brellas and then each umbrella again decomposed into sub-
umbrellas to define to the final topology of the mesh after the
separation. The first decomposition into umbrellas is made in
such manner that, in the resulting umbrellas, two faces are suc-
cessive if and only if they are adjacent through a regular edge or
they are paired into the pairing relation defined in Section 3.1.
By this construction, all faces have a predecessor and a succes-
sor (see Fig. 12a). The second decomposition into sub-umbrellas
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V14

(b) First decomposition: Two sub-umbrellas
are obtained.

(c¢) After sub-umbrellas balancing.

(d) After geometrical modification.

Figure 12: Example of sub-umbrella decomposition with one non-manifold edge. v is the target vertex, {v;} are the neighbours of v, and the red edge is a inconsistent
edge. (b) Orange and purple faces: sub-umbrellas obtained. (d) Green points: vertices added for each sub-umbrella to perform the contraction. Light grey faces: faces

are added to avoid creation of holes.

(a) Umbrella after decom-
position in sub-umbrellas

(b) After opening.

Figure 13: 2D representation of the separation of the duplicate vertices. Blue
point: target vertex. (a) Faces are coloured randomly according to the sub-
umbrella decomposition. (b) Green points: vertices added for the contraction of
edge. Orange point: vertex added to the barycentre of the green points to radially
fill the middle hole. Light grey faces: faces added between existing faces. White
faces: faces added in the middle to fill the hole.

is initially built to avoid repetition over a neighbouring vertex.
Then, it is re-balanced to optimize the continuity of the normals
of the faces of each sub-umbrella. That avoids the creation of
spikes after the geometrical displacement (see Fig. 12b-c).

For each sub-umbrella obtained, a duplicate vertex is cre-
ated. These duplicates are moved at a distance that does not
exceed a o orthogonal distance with inconsistent edges adja-
cent to the original vertex. Moreover, the orthogonal projection
of this move vector onto the altitude on each of the adjacent
faces does not exceed the face itself. The direction of this move
is the average direction of all the regular adjacent edges except
the last one in the sequence. If the move vector is null, the sub-
umbrella is split into two sub-umbrellas. This separation of the
neighbouring faces between the duplicate vertices generates a
hole (see Figs 12d and 13). This hole is filled by adding a ver-
tex in the barycentre of the duplicate vertex and faces between
successive sub-umbrellas and this next vertex (see Fig. 13b).

The displacement of the duplicate vertices can create new self-
intersections, whether by moving the existing faces or by adding
new faces (white and light grey faces, Fig. 13). With the inten-
tion to avoid these new self-intersections, we distinguish three
types of faces. The first is a modified face (grey face, Fig. 14),
the second is a face added between two successive duplicate
vertices and a pre-existing vertex of the mesh (light grey face,
Fig. 14) and the third is face added between two successive du-
plicate vertices and the added vertex. By this distinction, we ob-
tain three kinds of tetrahedra with one, two and three moves,
respectively. With these constructions, when a collision is de-
tected with one of these tetrahedra, this collision is avoided
by reducing the amplitude of the move(s) such as that pre-
sented in Fig. 14. Finally, if one of the displacement fails, that is,
the amplitude of displacement ~0, each sub-umbrella is subdi-
vided into two if possible; otherwise another umbrella is treated
first.

4 Results

The proposed method was tested on standard computer graph-
ics benchmark models as well as over 35 000 meshes cho-
sen from the Princeton data set (Shilane, Min, Kazhdan, &
Funkhouser 2004), the Thingil0K data set (Zhou and Jacobson
2016), the ShapeNet (Chang et al. 2015) data set, as well as a
proprietary data set collected by the authors. The test set cov-
ers broadly different types of meshes, ranging from synthetic
meshes, such as Klein bottle, Mobius strip, Elephant head, Bikini,
Beast, and Rhino, to preprocessed 3D scans, such as the Happy
Buddha model from the Stanford 3D Scan Repository, as well as
noisy real-world data, including Mandible & Maxilla mesh ob-
tained from a magnetic resonance (MR) image, Heart mesh ob-
tained from a computed tomography (CT) data, Nose Skin & Car-
tilage model, and dental implant models, Implants A & B (A: 3D
laser scan reconstruction and B: Marching Cubes reconstruction
from CT scan), collected by the authors.
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Figure 14: Corrections of detected collisions during the geometrical separation of inconsistent vertices. Three types of faces are distinguished: the moved faces (grey),
the faces added between two successive sub-umbrellas and their common vertex (light grey), and the faces added between two successive sub-umbrellas and the newly
added barycentre vertex (white), which are shown in tabular form. The first column shows the initial configuration; in the middle, a collision case is encountered; and
in the third, the correction is carried out. Blue point: original vertex. Green points: duplicate vertex after displacement. Red point: collision point or vertex of colliding

face. Black point: neighbour of the targeted vertex.

(a) Original

(b) MeshFix (c) Proposed method S1 (d) Proposed method S2

Figure 15: Comparison of MeshFix and the proposed method on the Elephant head model. S1: Solution with patch reversing. S2: solution without patch reversing and

after removing reversed shells.

Upon such data set, the proposed method was compared
against two state-of-the-art methods, namely Geomagic studio®
3D Systems (1997-2016) and MeshFix (Attene 2010-2016, 2010).
During these tests, all outputs generated by the proposed
method were confirmed to be free of geometrical and topolog-
ical inconsistencies, while other methods exhibited persisting
inconsistencies and/or newly introduced inconsistencies.

4.1 Synthetic data

The Klein bottle model (the example in Section 1.2) and the Mé6bius
strip are typical surfaces known to have only one side, with the
difference that the Mobius strip has boundary edges, whereas
Klein bottle does not. Moreover, the Klein bottle contains self-
intersections. These two models present certain problems con-
cerning orientation, namely unresolvable turning edges (for the
Mobius strip) and unpairable connections of dividing lines without
reversing (for the Klein bottle). For the Mdbius strip, turning edges
would be considered conflict regardless of the score chosen. If
the user chose to resolve it by disconnection, the strip would be
cut (Fig. 1b). This resultis similar to that in MeshFix without hole
filling. If the user chose to resolve the conflict by offsetting, the
strip would obtain volume (Fig. 1a). For the Klein bottle, if the user
allowed the reversing of patches, the inner component would be
reversed to allow pairing with the other component and would
be associated with the connection of the inside of the bottle if
the field Or was positive (favourable for the pairing A). This re-

sult can be obtained by volume, winding, or parity-counting ap-
proaches. Using MeshFix or Geomagic studio®, the reversed part
of the handle and the inner patch was removed and holes were
filled.

The Elephant head is a mesh model without inconsistent ori-
entation edge but multiple overlaps in the ear area (Fig. 15a).
MeshFix removes self-intersecting faces and fills holes, whereas
the proposed method provides alternatives. For instance, re-
versed shells can be separated from the main shell. The user
can thus force the preservation of orientations of faces using the
score, as presented in Equation (2), (Or, #Mg){P O} (Fig. 15d). Al-
ternatively, faces can be reversed, creating an in/out structure,
as the number of shells would be minimized using the score
(Or, #Mg){In/ Out} (Fig. 15c).

Beast and Rhino are two synthetic models with different struc-
tures. The Beast model is composed of one shell with overlaps,
whereas the Rhino model is composed of 26 overlapping shells
(Fig. 16b). The shells of the Rhino model contain a small number
of self-intersections (27 intersecting faces). Even though these
models have different construction, only the external shell is rel-
evant. Also, the in/out structure is not required if separation is
used. Consequently, they can be solved using the score (Or){}.
Using this simple scoring, the outer hull would be preserved
and inner components would be isolated to allow their removal
(Fig. 16a and c).

The Bikini model is a concrete example where offsetting
can be used to resolve conflicting components. When the user
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Figure 16: Fixing of Beast and Rhino models, where shells are rendered in random colours. (a) Beast model after repairing. (b) Rhino before repairing. (c) Rhino after

repairing.

.

(a) Original

) After repairing

Figure 17: Bikini model. (a) Original model and (b) output obtained using the han-
dling of conflicts by offsetting.

requires an in/out structure on this model, all components of the
ribbon are conflicting. Choosing offsetting to resolve these con-
flicts, the patches of the ribbon are duplicated, creating volume
from open surfaces. Then, if the field Or is positive, the outer
components are associated with the body component, whereas
the inner components are detached towards the inside (Fig. 17).
If the user chose disconnection for resolving conflicts, elements
of the ribbon would be dissociated from the body component.

4.2 Acquired data

The Happy Buddha model is a classic model obtained from
the Stanford 3D scanning repository. It contains 153 self-
intersections, 5581 non-manifold edges, but only 2 connected
components. The goal is to clean this data beyond the main hull,
that is, to remove all wrong facing. To perform this cleaning, the
score (—#Mg, Or){In/Out}, with the disconnection scoring rule
for conflicts, is most suitable. The constraint In/Out will remove
dangling faces, and scoring will isolate small components touch-

ing the surface of the main shell and offset inconsistencies in-
side the main shell. For this test, a result similar to that of Ge-
omagic and MeshFix was obtained. However, as can be seen in
Fig. 18, the proposed method alters the data less than Geomagic
or MeshFix. The maximal error (distance) between matching fac-
ing of input and output was 0.001 for Geomagic, 0.0038 for Mesh-
Fix, and 0.0002 for the proposed method.

The Mandible & Maxilla model is data used in virtual surgical
planning, where the outside and the inside of the mesh are re-
quired. Common defects that may be found in the data are self-
intersections owing to decimation or smoothing processing and
non-manifold edges owing to reconstruction. To resolve this, the
adopted scoring should be (#Mg, Or){In/Out, NoRev}.

The Heart model is extracted from volumetric data. The thin
part of the septum has a large number of self-intersections and
degenerate triangles (Fig. 19). Here, the user certainly should dis-
card these components, which are in fact noise. To accomplish
that, the score (—#Mg, —Or){In/Out} should be chosen, which
would fragment small particles so that they can be easier to re-
move.

The Nose model is an open surface resulting from the
combination of two different acquisitions. This model is non-
manifold, highly perturbed, and contains several stretched tri-
angles at the base of the nose and multiple self-intersections.
Resolving these defects using MeshFix requires filling holes,
which would result in loss of the base of the nose (Fig. 1c). Geo-
magic and the proposed method yielded similar results close to
the input, with a maximum difference of 0.3 for Geomagic and
0.05 for the proposed method.

Implant A is reconstructed from 3D laser scan data. It presents
similar problems to those of the Elephant head. It exhibits surface
overlapping in sharp edges. This model can be repaired as the
Elephant head above. Implant B was obtained from the CT scan
and contains a small number of self-intersections but several
non-manifold edges (Fig. 20b). It contains 1197 edges with 3 ad-
jacent faces, 1445 edges with 4 adjacent faces, 10 edges with
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Figure 18: Happy Buddha model: comparison of the distance between the outputs of Geomagic, MeshFix, and the proposed method. The comparison was performed
using Geomagic studio, where black segments are bordering edges of the original model.
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Figure 19: Heart model: complete original model (left) and half-cut model showing the thin web of the chopped septum (right). (a) Original data. (b) After correction

and removal of small particles.

(a)

Figure 20: Nasal implants: two examples of acquisition by 3D optical scanning and CT scanning. (a) Implant A: original mesh with zoom in one of reversing surfaces.
(b) Implant B: from left to right—the mesh rendered with edges, point cloud in blue with non-manifold edges in black, the output of the proposed method without

constraint and a scoring (#R, Or, #Mg).

5 adjacent faces, and 14 edges with 6 adjacent faces. The pro-
posed algorithm handled these problems by disconnecting all
small connections in odd or not pairable. It created several small
shells but preserved the main component as much as possible.

The benchmark tests have been processed with Thingil0K,
Princeton, and ShapeNet data sets using MeshFix and our
method. Our method preserves more the original data with
around 85% of the data altered to almost 0% and the data alter-
ation does not exceed 20% for the worst cases (see Fig. 21c) when
preserving or reducing the number of the faces (see Fig. 21a). For
its part, MeshFix erases the whole data from over 87% of the in-
put models (see Fig. 21b and d).

4.3 Discussion

The advantages of the proposed method are that it preserves
as much as possible the original data instead of rebuilding it.
The method is efficient, and the processing time of the resolu-
tion of the pairing and the separation of inconsistencies takes
only 20% of the global processing time. That processing time is
minor compared with the 80% used by remeshing. In addition,
it is, on average, linearly proportional to the number of input

faces. By minimizing the addition of faces during the separa-
tion step, the quantity of faces is significantly reduced by the
cleaning step and increased by the remeshing. At the end of the
process, we observed a slight reduction in the number of faces.
This reduction of faces is mainly due to removing duplicate and
degenerate faces. The method enables the user to choose the
scoring rule of scoring. The latter is both an advantage and a
disadvantage. Obviously, flexibility in choosing the most suit-
able scoring rule facilitates the process. However, it requires user
expertise. Regarding the examples considered, two main strate-
gies can be distinguished. The first is to match noisy acquisi-
tions. It requires an in/out structure and isolate small compo-
nents, as in the Happy Buddha model. The second scoring rule
is to match synthetic models constructed by boundary repre-
sentation using the score (#R, Or, #Mg){}. It results in an outer
hull of the input model preserving the inner shells. In the exam-
ples, the Or field is given priority over the #Mg field. This is true
for most models. However, in certain cases, such as lung with
bronchus meshes, where there should be only one inner com-
ponent, the #Mg field should precede the Or field. Otherwise, for
complex models, a semi-automatic scoring rule would be more
suitable.
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Figure 21: Ratio of faces and maximal normalized double-sided Hausdorff distance between input/output for random sampling of 10 000 models from Thingi10K,
Princeton, and ShapeNet data sets. Our method uses a scoring (Or, #R, #Mg){In/Out}, the disconnection for solving conflicts, and ¢ = 0.001. The double-sided Hausdorff
is normalized using the radius of the bounding box of the input data. When the output data are empty, we consider the normalized double-sided Hausdorff distance

as 1.

A method for solving geometrical and topological inconsisten-
cies using graph representations and a scoring system was
proposed. The scoring was established to fit with the scor-
ing rule expected by the user in order that a 2-manifold sur-
face may be generated with a minimum of modifications. The
capability of the proposed method to resolve inconsistencies
was demonstrated on various models composed of synthetic
and acquired meshes. Compared with other existing meth-
ods/software, e.g. MeshFix and Geomagic, the proposed method
proved to preserve the geometry of the input data while han-
dling odd topological inconsistencies.

Furthermore, the proposed method depends on scoring rules
that should be defined by the user according to the expected
result. However, this score is not intuitive and requires experi-
ence. To overcome that, future work would be focused on the

simplification of this scoring using an auto-parametrization by
analysing the input data.

The authors thank Marco Attene for sharing the mesh repair
open source library MeshFix. They also thank Alec Jacobson, Ka-
van Ladislav, and Olga Sorkine-Hornung for sharing their syn-
thetic mesh models and Mathieu Laurentjoye for the Mandible &
Maxilla model. This work was supported by the Korea Research
Fellowship Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science and ICT, South
Korea (Grant No. 2015H1D3A1065744, PM: Dr. Youngjun Kim).
This research was supported in part by the Korea Institute of
Science and Technology (KIST) institutional program (Grant No.
2E30342, PM: Dr. Youngjun Kim).

1202 ABIN +0 U0 1526 Aq GE96109/1.5Z/1/8/3I01E/0POl/W09"dNO"D1WSPEDE//:SA)Y WOy PAPEOjUMOQ



The authors declare that they have no conflict of interest.

3D Systems(1997-2016). Geomagic studio. http://www.geomagic
.com, last visit 16 June 2020.

Aguerre, C., Charton, J., Desbarats, P., & Recur, B. (2013). SmithDR
(scientific multi imaging tool handled by a DAG layeR). http:
//www.lab327.net/projects/SmithDR/, last visit 16 June 2020.

Andujar, C., Brunet, P., & Ayala, D. (2002). Topology-reducing sur-
face simplification using a discrete solid representation. ACM
Transactions on Graphics, 21(2), 88-105.

Attene, M. (2010). A lightweight approach to repairing digitized
polygon meshes. The Visual Computer, 26(11), 1393-1406.

Attene, M. (2010-2016). Meshfix. https://sourceforge.net/projects
/meshfix/, last visit 16 June 2020.

Attene, M. (2014). Direct repair of self-intersecting meshes.
Graphical Models, 76(6), 658-668.

Attene, M., Campen, M., & Kobbelt, L. (2012). Meshrepair. http:
//meshrepair.org/, last visit 16 June 2020.

Attene, M., Campen, M., & Kobbelt, L. (2013). Polygon mesh re-
pairing: An application perspective. ACM Computing Surveys,
45(2), 15:1-15:33.

Attene, M., Giorgi, D., Ferri, M., & Falcidieno, B. (2009). On con-
verting sets of tetrahedra to combinatorial and PL manifolds.
Computer Aided Geometric Design, 26(8), 850-864.

Barki, H., Guennebaud, G., & Foufou, S. (2015). Exact, robust, and
efficient regularized booleans on general 3D meshes. Com-
puters & Mathematics With Applications, 70(6), 1235-1254.

Bischoff, S., & Kobbelt, L. (2005). Structure preserving cad model
repair. Computer Graphics Forum, 24(3), 527-536.

Bischoff, S., Pavic, D., & Kobbelt, L. (2005). Automatic restoration
of polygon models. ACM Transactions on Graphics, 24(4), 1332-
1352.

Campen, M., & Kobbelt, L. (2010). Exact and robust (self-
)intersections for polygonal meshes. Computer Graphics Fo-
rum, 29(2), 397-406.

Centin, M., & Signoroni, A. (2018). Advancing mesh completion
for digital modeling and manufacturing. Computer Aided Ge-
ometric Design, 62, 73-90.

Chang, A. X., Funkhouser, T. A, Guibas, L.]., Hanrahan, P,, Huang,
Q.-X,, Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi,
L., & Yu, F. (2015). ShapeNet: An information-rich 3D model
repository. CoRR, abs/1512.03012.

Charton, J., Kim, L., & Kim, Y. (2017). Boolean operations by a ro-
bust, exact, and simple method between two colliding shells.
Journal of Advanced Mechanical Design, Systems, and Manufactur-
ing, 11(4), JAMDSMO041.

Chen, Y., Wang, H., Rosen, D. W,, & Rossignac, J. (2005). A point-
based offsetting method of polygonal meshes. GVU Tech Re-
port GIT-GVU-05.

Cignoni, P.,, Callieri, M., Corsini, M., Dellepiane , M., Ganovelli, F,,
& Ranzuglia, G. (2008). MeshLab: an Open-Source Mesh Pro-
cessing Tool, Eurographics Italian Chapter Conference. 129-
136

Ericson, C. (2004). Real-time collision detection. Boca Raton, FL: CRC
Press, Inc.

Feng, W., Zhang, H., Huang, J., Wang, C., & Bao, H. (2010). Repair-
ing topological inconsistency of mesh sequences. Computer
Animation and Virtual Worlds, 21(34), 355-364.

Furukawa, R., Itano, T., Morisaka, A., & Kawasaki, H. (2007). Im-
proved space carving method for merging and interpolating
multiple range images using information of light sources of

active stereo. In Proceedings of the Computer Vision— ACCV 2007,
8th Asian Conference on Computer Vision, Tokyo, Japan, November
18-22, 2007, Proceedings, Part II, pp. 206-216.

Guéziec, A., Taubin, G., Lazarus, F., & Horn, W. (2001). Cutting and
stitching: Converting sets of polygons to manifold surfaces.
IEEE Transactions on Visualization and Computer Graphics, 7(2),
136-151.

Hétroy, F, Rey, S., Anddjar, C., Brunet, P,, & Vinacua, A. (2011).
Mesh repair with user-friendly topology control. Computer-
Aided Design, 43(1), 101-113.

Hornung, A., & Kobbelt, L. (2006). Robust reconstruction of water-
tight 3D models from non-uniformly sampled point clouds
without normal information. In Proceedings of the Fourth Eu-
rographics Symposium on Geometry Processing, SGP 06, pp.
41-50, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland.

Imai, Y., Hiraoka, H., & Kawaharada, H. (2014). Quadrilateral
mesh fitting that preserves sharp features based on multi-
normals for Laplacian energy. Journal of Computational Design
and Engineering, 1(2), 88-95.

Immonen, E. (2018). A parametric morphing method for gener-
ating structured meshes for marine free surface flow appli-
cations with plane symmetry. Journal of Computational Design
and Engineering, 6(3), 348-353.

Jacobson, A., Kavan, L., & Sorkine-Hornung, O. (2013). Ro-
bust inside-outside segmentation using generalized
winding numbers. ACM Transactions on Graphics, 32(4),
33:1-33:12.

Ju, T. (2004). Robust repair of polygonal models. In Proceedings of
the ACM SIGGRAPH 2004 Papers, SIGGRAPH '04, pp. 888-895,
ACM, New York, NY, USA.

Ju, T., & Udeshi, T. (2006). Intersection-free contouring on an oc-
tree grid. In Proceedings of the 14th Pacific Conference on Com-
puter Graphics and Applications (PG 06).

Jung, W,, Shin, H., & Choi, B. (2004). Self-intersection removal in
triangular mesh offsetting. In Proceedings of the CAD’04 Con-
ference.

Kim, S.-]., Lee, D.-Y., & Yang, M.-Y. (2004). Offset triangular mesh
using the multiple normal vectors of a vertex. Computer-Aided
Design and Applications, 1(1-4), 285-292.

Li, Y., & Kim, J. (2015). Fast and efficient narrow volume re-
construction from scattered data. Pattern Recognition, 48(12),
4057-4069.

Liu, S., & Wang, C. C. (2011). Fast intersection-free offset surface
generation from freeform models with triangular meshes.
IEEE Transactions on Automation Science and Engineering, 8(2),
347-360.

Lu, J. H.-C., Quadros, W. R., & Shimada, K. (2017). Evaluation of
user-guided semi-automatic decomposition tool for hexahe-
dral mesh generation. Journal of Computational Design and En-
gineering, 4(4), 330-338.

Nooruddin, F. S., & Turk, G. (2003). Simplification and repair of
polygonal models using volumetric techniques. IEEE Trans-
actions on Visualization and Computer Graphics, 9(2), 191-205.

Rossignac, J., & Cardoze, D. (1999). Matchmaker: Manifold BReps
for non-manifold r-sets. In Proceedings of the Fifth ACM Sym-
posium on Solid Modeling and Applications, SMA ’99, pp. 31-41,
ACM, New York, NY, USA.

Sagawa, R., & Ikeuchi, K. (2008). Hole filling of a 3D model by flip-
ping signs of a signed distance field in adaptive resolution.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(4), 686-699.

Schertler, N., Savchynskyy, B., & Gumbhold, S. (2016). Towards
globally optimal normal orientations for large point clouds.
Computer Graphics Forum. 36(1), 197-208.

1202 ABIN +0 U0 1526 Aq GE96109/1.5Z/1/8/3I01E/0POl/W09"dNO"D1WSPEDE//:SA)Y WOy PAPEOjUMOQ


http://www.geomagic.com
http://www.lab327.net/projects/SmithDR/
https://sourceforge.net/projects/meshfix/
http://meshrepair.org/

Shewchuk, J. (2008). General-dimensional constrained delau-
nay and constrained regular triangulations, I: Combinatorial
properties. Discrete & Computational Geometry, 39(1-3), 580-
637.

Shilane, P., Min, P, Kazhdan, M., & Funkhouser, T. (2004). The
Princeton shape benchmark. In Proceedings of the Shape Mod-
eling International, pp. 167-178.

Spillmann, J., Wagner, M., & Teschner, M. (2006). Robust tetra-
hedral meshing of triangle soups. In Proceedings of the Vision,
Modeling, Visualization VMV’06, pp. 9-16.

Voutchkov, 1., Keane, A., Shahpar, S., & Bates, R. (2017). (Re-
Jmeshing using interpolative mapping and control point op-
timization. Journal of Computational Design and Engineering,
5(3), 305-318.

Yamakawa, S., & Shimada, K. (2009). Removing self-intersections
of a triangular mesh by edge swapping, edge hammering,
and face lifting. In Proceedings of the 18th International Meshing
Roundtable, pp. 13-29, ed. B. Clark, Springer Berlin Heidelberg.

Zaharescu, A., Boyer, E., & Horaud, R. (2007). TransforMesh: A
topology-adaptive mesh-based approach to surface evolu-
tion. In Proceedings of the ACCV 2007 8th Asian Conference
on Computer Vision, Vol. 4844, pp. 166-175, Springer-Verlag,
Tokyo, Japan.

Zhou, Q., Grinspun, E., Zorin, D., & Jacobson, A. (2016). Mesh ar-
rangements for solid geometry. ACM Transactions on Graphics
(TOG), 35(4), 1-15.

Zhou, Q., & Jacobson, A. (2016). Thingi10k: A dataset of 10,000
3D-printing models. CoRR, abs/1605.04797.

1202 ABIN +0 U0 1526 Aq GE96109/1.5Z/1/8/3I01E/0POl/W09"dNO"D1WSPEDE//:SA)Y WOy PAPEOjUMOQ



